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Abstract

The problem of recovering a cumulative distribution function of a positive random variable via the 

scaled Laplace transform inversion is studied. The uniform upper bound of proposed 

approximation is derived. The approximation of a compound Poisson distribution as well as the 

estimation of a distribution function of the summands given the sample from a compound Poisson 

distribution are investigated. Applying the simulation study, the question of selecting the optimal 

scaling parameter of the proposed Laplace transform inversion is considered. The behavior of the 

approximants are demonstrated via plots and table.
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1. Introduction

In risk theory it is often required to evaluate the compound (aggregated) distribution of 

severity losses when the number of claims during some period of time is random. 

Unfortunately, the closed form solutions for many such cases are not available. See for 

example, Gzyl and Tagliani [1] and the references therein. Also, the problem of 

decompounding the random sums represents another interesting and difficult probabilistic 

inverse problem. On the other hand, in many models of risk theory, one can evaluate or 

estimate the Laplace transform (or exponential moments) of the target distribution. Hence, 

by inverting the Laplace transform numerically we will be able to recover the underlying 

distribution. Also, the derivation of the rate of approximations of functions will contribute to 

the theory of approximations as well.

Recently, the so-called moment-recovered (MR) approximation of the Laplace transform 

inversion was suggested in [2]. The present note highlights additional property for the scaled 

version (2) of this approximation. The approximation of the Laplace transform inversion in 

the aforementioned work is mainly recommended for use in the framework of the Hausdorff 
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moment problem, when the support of the target function F is a compact (supp{F} = (0, T), 

T < ∞). Here we suggest the modified, scaled version of the MR-Laplace transform 

inversion that enables us to apply it in the case of the Stieltjes moment problem as well, i.e., 

when T = ∞. The reader is referred to [3–6], where the questions on the moment-

determinacy of probability distributions and their approximations in the framework of 

inverse moment problem are investigated. See also Tagliani and Velasquez [7], where the 

fractional moments are used to approximate the Laplace transform inversion. Regarding the 

conditions on the moment determinacy of the distributions of compound geometric sums we 

refer to Lin and Stoyanov [8] and the references therein.

There are several very well known techniques for calculation of the compound distributions, 

e.g., Panjer recursion, Fourier transform technique, shifted gamma approach (see, for 

example, [9]), and maximum entropy method using the fractional exponential moments in 

[1], among others. Recently, Buchmann and Grübel [10] proposed the estimator of the 

individual loss distribution which is based on the inversion of the Panjer recursion formula. 

Based on the reversion of the power series, the authors in [11] derived the weak convergence 

of the inverse estimator of the distribution of summands to a gaussian process. Very 

interesting results are derived in [12], where a model with a noisy Laplace transform is 

investigated. In this type of model the regularization technique is applied.

The main aim of this article is to derive the upper bound for MR-approximation Fα,b in the 

sup-norm when the underlying distribution F has unbounded support in ℝ+. Here, we 

applied our technique for recovery of a compound Poisson distribution as well as for 

estimation of the distribution of the summands (the individual claim sizes) of a random sum 

given the sample from the distribution of aggregated sums. It is worth noting that the MR-

construction in (2) can be used not for only compound Poisson case but for other compound 

distribution as well. Also it is worth noting that the results of the current paper are easily 

extended to the multivariate case. This question will be studied in the forthcoming paper.

The article is organized as follows. In Section 2 the construction of the MR-approximation 

of the scaled Laplace transform inversion is introduced, and the uniform rate of 

approximation is established. In Section 3 we applied our construction to the problem of 

recovering the compound Poisson distribution as well as in decompounding the Poisson 

distribution. Several examples are considered as well. Based on simulation study, the 

graphical illustrations and table with the values of estimated approximation error are 

provided.

2. The rate of approximation

Assume that the distribution F is absolutely continuous and has a support ℝ+ = [0, ∞). Let f 
be its probability density function (pdf) with respect to the Lebesgue measure on ℝ+. In [2] 

we derived the Laplace transform inversion based on the moment-recovered approximation 

of the distributions in the Hausdorff moment problem. This inversion works well for 

distributions with a light tails. In this section we modify the aforementioned construction 

and study its behavior in the cases of a heavy tail distributions, e.g., a gamma and a log-

normal.
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Suppose that a random variable X distributed according to F. Assume also that we are given 

the sequence μ(F) = {μt(F), t ∈ ℕα} defined by the values of the scaled Laplace transform of 

F:

(1)

To simplify the notations let us assume in (1) that the scale value c = In b for some 1 < b ≤ 

exp(1). The problem of the optimal choice of the parameter b represents another question 

addressed in this article.

To approximate the cdf F, one can apply the result from Mnatsakanov [2]. Namely, let us 

introduce the scaled MR-Laplace transform inversion:

(2)

Our approximation is based on applying the following relationship:

Let us denote the pdf of the Beta (c, d) distribution by

(3)

where the shape parameters c, d > 0. Also for the simplicity of notations, let us write βα,x(·) 

≔ β(·, c,d) when c = [αb−x] + 1 and d = α − [αb−x] + 1. To approximate the survival 

function S = 1 − F let us consider Sα,b = 1 − Fα,b. Let us denote by ‖ϕ‖ the sup-norm of a 

function ϕ : ℝ+ → ℝ, and assume that for some b ∈ (1, e]:

(4)

The following statement is true:

Theorem 1

If the functions f and f' are bounded on ℝ+ and conditions (4) are satisfied, then Fα,b 

converges uniformly to F, and
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Proof

The proof repeats the steps used in the proof of Theorem 2 in [13]. Namely, first of all note 

that from (1) and (2) we have

(5)

where G(u) = F(−logbu) and ν = b−x. On the other hand, taking the derivative of

with respect to u we obtain

(6)

with c = [αν] + 1 and d = α − [αν]. Hence, applying the integration by parts in the last 

integral of (5) and taking into account (6), where ν = b−x, we derive:

Therefore,

(7)

where Ḡ(u) = 1 − G(u) = S(−logbu) and Ḡ(ν) = S(x). It is worth mentioning that for the first 

two derivatives of Ḡ:

we have:

(8)

respectively.
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Note also that the mean and variance of the Beta (c,d) distribution defined in (3) are such 

that

(9)

(10)

and

(11)

Now, let us use the following notations u ∧ ν min(u, ν) and u ∨ ν max(u, ν). Substitution of

into (7) and taking into account (8)–(11) yields

as α → ∞.

Remark 1

To approximate the probability density function f = F′ let us consider the ratio

where ΔFα,b(xj) = Fα,b(xj) − Fα,b(xj − 1) and xj = (In α − ln(α − j + 1))/In b,j = 1, …, α. After 

a simple algebra and scaling this ratio by (α + l)/α, one can derive the following 

approximation of f:

(cf. with the construction  introduced in [2] when b = exp(1)). The properties of fα,b 

and its extended version to the bivariate case will be studied in the forthcoming paper. 

Below, see Fig. 1, the curves of fα,b for two different distributions, Exp (β) and Gamma (α, 
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β) are provided for two different values of b : b = 1.08 and b = 1.15. Here, we considered the 

rates β = 0.2, 0.5. Namely, we assume X ~ Exp (0.2) in Fig. 1(a) and (b), and X ~ Gamma 

(3, 0.5) in Fig. 1(c), respectively.

3. Some applications and examples

In many practical situations it is impossible to evaluate the exponential moments μ(F). For 

example, the log-normal distribution does not have an finite analytical form for its Laplace 

transform. In such cases the estimated μ̂(F) = {μ̂
j(F),j ∈ ℕα} exponential moments of F can 

be used in (2). This provides the MR-estimate of the Laplace inversion:

(12)

Note that if F is observed directly by means of a sample of i.i.d. random variables X1, …, 

Xn, then (12) with the empirical exponential moments μ̂(F) provides the estimate of the 

survival function S:

(13)

By F̂
n in (13) we denote the empirical cdf of the sample X1, …, Xn (cf. with the last line of 

equation (5)).

In Figs. 2–6 below, for the approximated and estimated curves of the underlying cdfs we use 

the green and blue colors, respectively. Note also that to make the approximation smoother 

one can linearize the step function by connecting the distinct values of Fα,b(x) at x ∈ {(In α 

− ln(α − j + 1))/In b,j = 1, …, α} via lines. See, for example the curve of corresponding 

version of F̂
α,b in Fig. 2 (c).

To choose the optimal b one can use the simulated data-set. Namely, for each given α and n, 

let us calculate the average of ‖F̂
α,b − F‖ over R replications:

(14)

After this step, define the optimal . Here, in (14), 

represents the value of F̂
α,b obtained on the r-th replication, 1 ≤ r ≤ R.

In the case of two different gamma distributions, we recorded the values of  when 

α = 20, 25, 32, and the sample size n = 100 k, k = 2, 5, 10. See Table 1 below, where, we 

took the number of replications R = 50 and b = 1 + jΔb,j = 1, …, 80, with Δb = 0.025. The 

simulations show that, for given α and n, the value of optimal b* depends on the mean of F.
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Example 1

Assume that X follows the exponential distribution with the rate β,X ~ Exp(β). In Fig. 2 (a) 

and (b) and Fig. 2 (c), we plotted the curves of Fα,b, F̂
α,b, and corresponding cdf F when β = 

0.5 and 0.10, respectively.

Example 2

Let X ~ Gamma(shape = a, rate = β. Consider two cases: (a, β) ∈ {(4, 2.5), (4, 0.4)}. The 

plots in Fig. 3 (a) and (b) provide the approximated and estimated curves Fα,b and F̂
α,b, 

respectively, when α = 32, b = 1.7, and n = 500 in the first case with β = 2.5. Fig. 3(c) 

displays both approximated and estimated curves when α = 32, b = 1.1, and n = 500 in the 

second case.

Example 3

Let X ~ Log-normal (μ, σ). Consider again two cases with (μ, σ) ∈ {(0, 1), (1, 2)}. See Fig. 4 

(a) and (b), where the curves of the target cdfs and their estimated counterparts are 

displayed.

From Examples 2–4 we see that the optimal value of scaling parameter b is a decreasing 

function of the mean of X.

Recovery of a Compound Poisson distribution—Let X1, X2 … be i.i.d. random 

variables from cdf F defined on ℝ+. Consider a random sum

(15)

Here the number of summands N is a discrete random variable which is assumed to be 

independent from the summands. For example, in insurance literature, the aggregated claim 

size Y often follows a compound Poisson distribution, i.e., when the number of claims N has 

a Poisson distribution with some intensity λ > 0. Assuming that λ is given, we would like to 

approximate or estimate the distribution of aggregated claim sizes G when F is known or 

unknown, respectively. One can use the relationship

(16)

to derive the Laplace transform of the aggregated claim sizes and then to approximate its 

inversion via (2) (cf. with Panjer [14]).

Assume first that the distribution F of the individual claim sizes is known and N has a 

Poisson distribution, N ~ Pois (λ), with some known intensity λ > 0. From the relationship 

(16) we have:

(17)
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Now let us apply (2), where the exponential moment sequence of the target distribution is 

μ(G) = {μj(G),j ∈ ℕα} with μj(G) = ℒG,b(j). This yields the scaled Laplace transform 

inversion for recovering G:

(18)

Example 4

Let X ~ Gamma(a, β), with a = 2, β = 2 and λ = 4. Fig. 5 (a) provides the curve Gα,b 

approximating the Compound Poisson cdf G when α = 32 and b = 1.115. For comparison we 

also plotted the curve of the empirical cdf of the sample Y1, …, Ym drawn from G with the 

sample size m = 104. Note that in this example, the scaled Laplace transform of G has a very 

simple form:

Now assume that F is unknown but the sample X1, …, Xn from F is available. In this case, 

one can substitute the empirical counterpart ℒ̂
F,b of ℒF,b into (17).

We simulated n = 800 observations from Gamma (2, 2) distribution, and applied (18) with 

the estimated version of μj(G):

As a result, we derived the estimate of the compound Poisson distribution:

Fig. 5 (b) displays the estimator of G based on Ĝα,b. Fig. 5 (c) displays the approximant of 

G and corresponding estimator Ĝα,b when Xi, ~ Gamma (2, 0.5) with n = 800, λ = 4, and b = 

1.05. To make the comparison, in all three plots of Fig. 5 the empirical cdf (the black curve) 

of the sample from cdf G with the sample size m = 104 is displayed as well. Again, we see 

that when the mean of G is increasing the optimal value of parameter b is decreasing.

Decompounding a Poisson distribution—Now let us apply the MR-approach in the 

following inverse problem when, given the distribution G in (16) or the sample from G, we 

would like to determine the distribution F or estimate it, respectively. We will call this 

problem decompounding.

Different approaches were proposed to handle the problem of decompounding. See, for 

example, Buchmann and Grübel [10], and Bogsted and Pitts [11] among others.
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Assume now that the exponential moments μj(F) of unknown cdf F are recovered somehow. 

Then to recover cdf F one can apply the Laplace transform inversion (2). In particular, when 

N ~ Poisson (λ), the relationship (17) gives

(19)

Hence, to estimate the distribution of the summands F, we can estimate its exponential 

moments μj(F) via substitution of the corresponding exponential moments of the empirical 

distribution Ĝn into (19), and then apply (2). This yields the MR-estimate of F:

(20)

where μ̂(F) = {μ̂
j(F),j ∈ ℕα} and .

Finally, in Fig. 6, we plotted the estimates of the individual claim sizes for three different 

models: Exp (0.2), Gamma (2, 0.5), and Log-normal (0, 1), given the samples Y1, …, Yn of 

size n = 1000 from the compound Poisson distribution G with parameter λ = 2, 4. In all three 

cases we took b = 1.115.

4. Conclusions

We derived the uniform upper bound for the rate of MR-approximation of a cdf F supported 

by a positive half line. In the case when the mean of the underlying distribution is not very 

large, the proposed modification of the moment-recovered Laplace transform inversion Fα,b, 

with 1 < b ≤ exp(1), is recommended rather than the one when the scaling parameter b = 

exp(1) (cf. Mnatsakanov [2]). The main advantage of MR-aprroximation Fα,b is its easiness 

of implementation. The disadvantage of Fα,b is that it becomes a constant beyond the point 

In α/ In b. Hence, when α is not large enough, we recommend a choice of b very close to 1.
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Fig. 1. 
(a) Approximation of Exp (0.2) pdf by fα,b when α = 32 and (a) b = 1.08; (b)b = 1.15; (c) 

Approximation of Gamma (3, 0.5) pdf by fα,b when α = 32 and b = 1.15.
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Fig. 2. 
(a) Approximation of Exp (0.5) cdf by Fα,b when α = 32, b = 1.25; (b) Estimation of Exp 

(0.5) cdf by F̂
α,b when α = 32, b = 1.25, and n = 500; (c) Estimation of Exp (0.10) cdf by 

smoothed version of F̂
α,b when α = 32, b = 1.03, and n = 500.
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Fig. 3. 
(a) Approximation of Gamma (4, 2.5) cdf by Fα,b when α = 32, b = 1.7; (b) Estimation of 

Gamma (4, 2.5) cdf by F̂
α,b when α = 32, b = 1.7, and n = 500; (c) Approximation and 

Estimation of Gamma (4, 0.4) cdf by Fα,b and F̂
α,b when α = 32, b = 1.1, and n = 500, 

respectively
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Fig. 4. 
(a) Estimation of Log-normal (0, 1) distribution by F̂

α,b when α = 32, b = 1.25, and n = 200; 

(b) Estimation of Log-normal (1,2) distribution by F̂
α,b when α = 32, b = 1.115 and n = 

1000.
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Fig. 5. 
(a) Approximation of Compound Poisson distribution G by Gα,b, when X ~ Gamma (2, 2), 

and λ = 4, α = 32, b = 1.115; (b) Estimation of G by Ĝα,b with n = 800 and λ = 4, α = 32, b 
= 1.115; and (c) Approximation and Estimation of G by Gα,b and Gα,b, when X ~ Gamma 

(2, 0.5), n = 800, λ = 4, α = 32, and b = 1.05.
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Fig. 6. 
(a) Estimation of individual claim size distribution F by F̂

α,b with α = 32, b = 1.115, n = 103, 

when (a) X ~ Exp(0.2) and λ = 4; (b) X ~ Gamma(2, 0.5) and λ = 2; and (c) X ~ Log-normal 

(0, 1) and λ = 2.
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Table 1

The values of  and b* (in brackets) for Gamma distributions.

Model n/α 20 25 32

Gamma (4, 2.5) 200 0.0928(1.60) 0.0813 (1.70) 0.0710(1.85)

500 0.0885 (1.70) 0.0738 (1.70) 0.0666(1.80)

103 0.0875(1.55) 0.0740(1.70) 0.0640(1.70)

Gamma (4, 0.4) 200 0.0918(1.06) 0.0854(1.075) 0.0707(1.06)

500 0.0881 (1.06) 0.0757 (1.06) 0.0560(1.06)

103 0.0846(1.06) 0.0714 (1.06) 0.0548(1.06)
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